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ABSTRACT

(3)
A new approach to modeling of circuit responses and gradients

is proposed, We exploit multidimensional quadratic approximation

and take full advantage of available gradient information.

Efficiency and accuracy are demonstrated by gradient-based yield

optimization of a filter and an MMIC amplifier.

INTRODUCTION

Yield-driven design has become widely accepted as a necessary

design tool to decrease manufacturing cost [1,2]. However, the

existing design approaches are computationally intensive and,

therefore, for large-scale problems the effort required can be
prohibitive.

In this paper, we propose to utilize an efficient quadratic

approximation scheme [3,4] to replace the expensive repeated

circuit simulations and gradient evaluations, in order to speed up

the optimization process. The novelty of this utilization is that not

only circuit performance functions, but also their gradients are

approximated. In a gradient-based optimization procedure, such
as the one-sided fll centering approach [5], gradient information

is critical in determining the direction for optimization iterations

to follow. Higher gradient accuracy will improve the overall

performance of the optimization process.

EFFICIENT QUADRATIC APPROXIMATION

The quadratic model to be used to approximate a response or

a gradient function f(x), x = [xl X2 . . . Xn]T, k an interpolating

polynomial of the form

CI(x) = a.+ t a,(xi - r’i) + 3ai,(x; - ri)(xj - rj), (1)

i= 1 j,i=l
j>i

where

r=[rlr2. ..rn]T (2)

is a known reference point. Using actual circuit simulation, the

function f(x) is evaluated at points xi, i = 1, 2, . . .. m, where m >

n+l. These points are called the base points. Using f(xi), we set

up the system of linear equations
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[28[:1=[;1
where

a=[aoalaz. .. an] T (4)

and

v = [all azz . . . an” al~ al~ . . . an_l,JT, (5)

respectively. The vectors fl and f2 contain the function values
f(xi), and the matrices Qii, i, j = 1, 2, are determined from the
coordinates of the base points. If m < (n+l)(n+2)/2 (which is
normally the case since we want to perform as few actual circuit
simulations as possible) the above system is under-determined. As
pointed out in [3], when the least-squares constraint is applied to
v, a unique solution to (3) can be found and that solution is called
the maximally flat quadratic interpolation.

Following the approach proposed in [4], we use only m, where
n+l < m < 2n+l, base points. The reference point r is selected as
the first base point X1. The next n base points are selected by

perturbing one variable at a time around r, i.e.,

xi+l=r+ [O. .. JiOi O] T,i]T, i =1,2, ....n. (6)

where ,f?iis a predetermined perturbation. The remaining m-(n+l )

points follow to provide the second-order information on the
function. They are

xn+l+i=r+ [O. . .Oqi O. . .O]T, i= 1,2, ....m-(n+l). (7)

where Yi is another perturbation of ri, which must not equal Pi.
This particular arrangement of base points leads to simple, closed-
form formulas for determining the coefficients in (4) and (5).

Efficiency of the approach is unsurpassed and the computational

effort increases only linearly with the number of variables n.

Additionally, the resulting maximally flat quadratic interpolation

has the property that the coefficients aii for i # j are zero.

QUADRATIC APPROXIMATION TO

RESPONSES AND GRADIENTS

In [3] and [4], only circuit responses are modeled by quadratic

functions. The gradients of the responses are either not used or

their approximate values are calculated by differentiating the

quadratic approximate responses. To further improve the

performance of the gradient-based yield-driven optimization,

more accurate gradients are preferable.
Consider a response function with n variables. The gradient

of the response is a vector of functions of the same n variables,
each of the functions being the partial derivative of the response
w.r.t. one designable variable. In yield optimization we typically
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deal with three types of variables, namely, rr~~ designable
variables x~~ with statistics, rr~ designable variables XD without
statistics, and ns non-designable variables X~ which are subject to

statistical variations. Suppose that there are k responses, Ri, i = 1,
2 , . .. . k. The gradients of the responses with respect to the

designable variables are

VRi = [(c?Ri/c9x0D~)T (~ Ri/8x0D)T]T, i = 1, 2, .... k, (8)

where X“ stands for the nominal values and the dimension of the

gradient vector is (nDs + nD).
For yield-driven design, circuit responses and their gradients

have to be evaluated at a number of statistical outcomes. Each

statistical outcome is generated in a (nDs + ns)-dimensional ?me
according to a known statistical distribution and can be expressed

as

[xDsT XST]T= [xODsT xO~T]T+[AxDsT AxsT ]T, (9)

where AxDsT and AxsT are outcome specific deviates from the

nominal values. Because of a large number of statistical outcomes

needed for a meaningful yield estimate the main saving of the

computational effort is achieved by building the models in the
(nDs + n~)-dimensional space of the statistical variables (9). In

other words, we consider (9) as the variables in the quadratic
model, that is, the vector x in (1) is

x = [xDs T %T IT. (lo)

Locality of statistical spreads assures a good level of model

accuracy. The models are built for the current (optimization

specific) nominal point and utilized for as many statistical

outcomes as desired. In addition to the response functions, each

entry to the gradient vectors can be approximated by a separate

quadratic function in a similar manner as the response functions

are. Thus, for k responses there is a total of k(l + nDs + nD)
functions to be approximated, i.e.,

[Rl VRIT R2 VR2T .. Rk VRkT]T. (11)

It should be pointed out that, if the ad joint technique is used,

the gradient can be available at a low additional cost to the circuit

simulation, and can be returned from the simulator regardless of

whether it is utilized or not. For example, the FAST technique [6]

requires very little additional computational effort to evaluate

sensitivities in the harmonic balance environment [7]. Therefore,
the proposed method can not only utilize information that would

otherwise be lost, but also allows for reduction of the model

dimensionality by n~, as is clearly seen from (10).
The resulting quadratic model for the gradient is more

accurate than the one that could be obtained by differentiating the

quadratic model of the response, because the partial second-order

information is incorporated in the model.

EXAMPLES

The proposed quadratic approximation technique has been
implemented [8]. 2(n~~ + n~) + 1 base points, defined by (6) and
(7), are used. An interface has been developed for the response

and gradient approximation module which is very flexible in

dealing with different types of variables involved in yield-driven

design. The following examples illustrate efficiency and accuracy

of the proposed method.

A. 13- Elenzent Low-Pass Filter

The low-pass filter shown in Fig. 1 [9] is considered. The

circuit must meet the specifications: insertion loss less than 0.4dB

at the angular frequencies

{0.25, 0.27, 0.29>0.31,0.33,0.67, 0.69,0.71,0.73, 0.75,0.90,
0.905, 0.91, 0.92, 0.93, 0.978, 0.981, 0.984, 0.986, 0.988, 1),

and greater than 49dB at

{1.04569, 1.056, 1.059, 1.063, 1.067, 1.071, 1.115)

There are 13 design variables. A normal distribution with 0.5%

standard deviation is assumed for all variables. The starting point

is the optimal minimax solution, which has an estimated yield of

33.4%. To illustrate the efficiency of the new quadratic

approximation approach, we solve the problem using both

approximate simulations from the quadratic model and exact

simulations. This problem involves 28 frequency points and 100

statistical outcomes, resulting in 2800 error functions. The final
yields for both approaches are 75.6 and 80.7V0. Computational

details are given in Table I. CPU times for the two designs were
7 and 30 minutes, respectively.
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z x, :X4 I : x7 — Xlo

0 T
:X,j 1

Fig. 1. Circuit schematic of the LC 13-element filter [9].

B. Two-Stage GaAs MMIC Feedback A nzpliflel

We consider a two-stage 2-6GHz GaAs MMIC feedback
amplifier [2]. The equivalent circuit model for the FET and the

circuit are shown in Fig. 2. The specifications are a small-signal

gain of 8dB+ ldB, VSWR at the input port of less than 2, and

VSWR at the output port less than 2.2. A total of 9 sampling

frequency points equally spaced with the step of 0.5GHz are used.

It is intended to manufacture high-volume, high-yield, and,

consequently, low-cost microwave OP amps. The size of the IC
has a strong effect on the cost. Therefore, we consider the mean

values of most capacitors as fixed to keep the size of the chip

reasonable. The mean value of the gate width is fixed because of

the assumed FET process, but a 3~o standard deviation is allowed.

Since the RF responses are not very sensitive to changes in the bias
resistors, no tolerances are assigned to the resistors. Two feedback

resistors and a forward capacitor are chosen as design variables.

A standard deviation of 20/0 is assumed for the design variables.

For nominal values and standard deviations of other elements, see

Table IL

The first step in the entire optimization procedure is to find a

minimax solution as the starting point for yield-driven design.

The minimax solution is found and listed in Table 11, The yield

estimate at this point is 32.l~o. Two yield-driven optimization
processes are carried out with and without the new quadratic

approximation. Two solutions and the final yields are given in
Table III. The actual yields based on a Monte Carlo analysis of

1000 outcomes are 77.8% and 77.3qo, respectively. The
corresponding CPU times are 9 and 39 minutes.
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TABLE I

YIELD OPTIMIZATION OF THE LC

13-ELEMENT FILTER WITH AND WITHOUT

QUADRATIC APPROXIMATIONS

TABLE 111

YIELD OPTIMIZATION OF THE MMIC

AMPLIFIER WITH AND WITHOUT

QUADRATIC APPROXIMATIONS

Parameter Initial Solutiont Solutiontt Parameter Initial Solutiont Solutiontt

xl

%

X3

X4

X5
X6

X7

‘8

X9

Xlo

%1

X12

X13

0.2088

0.03594

0.1822

0.2340

0,2424

0.08776

0.1333

0.3549

0.06477

0.1674

0.1422

0.1140

0.1433

0.2145

0.03642

0.1800

0.2347

0.2426

0.08702

0.1290

0.3535

0.06496

0.1625

0.1435

0.1120

0.1414

0.2205

0.03929

0.1775

0.2266

0.2556

0.08426

0.1234

0.3551
0.06481

0.1561

0.1498

0.1098

0.1303

Yield

Estimate 33.4% 75.6~o 80.7°h

CPU* 7min. 30min.

t The solution after one phase of yield optimization with

quadratic approximation.
tt The solution after one phase of yield optimization with

* exact simulations and numerical gradients.
On the Sun SPARCstation 1.

Comments: Normal distribution of a = 0,5% is assumed for

all parameters. 100 outcomes are used in the optimization.

1000 outcomes are used in the yield estimation.

Parameters are scaled down by the factor 27r, e.g., the

actual element value of xl is 2TX0.2088.

TABLE II

PARAMETER VALUES AND
TOLERANCES FOR THE

MMIC AMPLIFIER

Element Mean Standard
Parameter Value Deviation

RI 201.02 207.63 207.73
R2 504.82 627.94 630.53
C3 5.3501 2.7742 2.7563

Yield

Estimate 32.1% 77.8% 77.3V0

CPU* 9min. 39min.

t The solution after one phase of yield optimization with

quadratic approximations.
tt The solution after one phase of yield optimization with

exact simulations and numerical gradients.

“ on the Sun SPARCstation 1.

Comments: 100 outcomes are used in the optimization. 1000

outcomes are used in the yield estimation.
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(a) Normalized GaAs MESFET model [2]. Z is the gate
width in millimeters. gm = 0.17Z, and ~ = 2,5ps. All

resistors are in ohms. All capacitors are in picofarads. (b)

A two-stage amplifier [2].
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CONCLUSIONS

We have presented a new scheme for quadratic modeling

where both circuit response functions and their gradients are

simultaneously approximated. It is especially suitable for gradient

based yield-driven design, making the model more accurate and

robust. A standard test problem and an MMIC amplifier design

illustrate the merits of our method.
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